安心交易
不成功退款,无后顾之忧,风险服务升级。
This journal publishes original research papers on nonlinear hyperbolic problems and related topics, of mathematical and/or physical interest. Specifically, it invites papers on the theory and numerical analysis of hyperbolic conservation laws and of hyperbolic partial differential equations arising in mathematical physics. The Journal welcomes contributions in:Theory of nonlinear hyperbolic systems of conservation laws, addressing the issues of well-posedness and qualitative behavior of solutions, in one or several space dimensions.Hyperbolic differential equations of mathematical physics, such as the Einstein equations of general relativity, Dirac equations, Maxwell equations, relativistic fluid models, etc.Lorentzian geometry, particularly global geometric and causal theoretic aspects of spacetimes satisfying the Einstein equations.Nonlinear hyperbolic systems arising in continuum physics such as: hyperbolic models of fluid dynamics, mixed models of transonic flows, etc.General problems that are dominated (but not exclusively driven) by finite speed phenomena, such as dissipative and dispersive perturbations of hyperbolic systems, and models from statistical mechanics and other probabilistic models relevant to the derivation of fluid dynamical equations.Convergence analysis of numerical methods for hyperbolic equations: finite difference schemes, finite volumes schemes, etc.The Journal aims to provide a forum for the community of researchers who are currently working in the very active area of nonlinear hyperbolic problems, and will also serve as a source of information for the users of such research.There is no a priori limitation on the length of submitted manuscripts, and even long papers may be published.
该期刊发表关于非线性双曲线问题和相关主题的原始研究论文,数学和/或物理兴趣。具体而言,它邀请了关于双曲守恒定律和数学物理中出现的双曲偏微分方程的理论和数值分析的论文。期刊欢迎以下方面的贡献:非线性双曲守恒定律系统理论,解决了一个或多个空间维度中解的适定性和定性行为问题。数学物理的双曲微分方程,如广义相对论的爱因斯坦方程,狄拉克方程,麦克斯韦方程,相对论流体模型等。洛伦兹几何,特别是满足爱因斯坦方程的时空的全局几何和因果理论方面。连续体物理中出现的非线性双曲系统,如:流体动力学的双曲线模型,跨音速流的混合模型等。由有限速度现象主导(但不是唯一驱动)的一般问题,例如双曲线系统的耗散和色散扰动,以及来自统计力学和与流体动力学方程的推导相关的其他概率模型的模型。双曲型方程数值方法的收敛性分析:有限差分格式,有限体积格式等。该期刊旨在为目前正在非常活跃的非线性双曲线问题领域工作的研究人员提供一个论坛,并且还将作为此类研究用户的信息来源。提交稿件的长度没有先验限制,甚至可能会发表长篇论文。
安心交易
不成功退款,无后顾之忧,风险服务升级。
合规备案认证机构
资质许可齐全,合规经营,用户权益有保障。
正刊保障
刊物在国家新闻出版署网可查,抵制假刊、增刊。
对公账户资金监管
交易均通过对公账户,资金安全有保障。01 选择服务并上传稿件 我们的学术顾问将根据您的需求推荐适合的服务
02 分配资深编辑和同行专家 根据您的服务方案和研究方向,为您分配资深编辑和同行专家
03 交付及反馈 每个环节的服务会在您审阅和确认后进行下一步,根据您的反馈和建议做调整
04 提升稿件质量 我们将基于您的反馈并平衡期刊的投稿要求,为您进一步优化稿件
05 提交投稿 出版专家将在您确认定稿后,为您整理并检查所有必须文件,协助您完成期刊投稿。
06 投稿跟进 及时查询稿件状态,协助您与期刊编辑沟通,根据审稿意见协助修正文章
07 拒稿支持 若期刊拒稿,您可通过拒稿咨询服务发掘稿件的改进方案,并获取365天无限次向同期刊或其他期刊的重投服务